KPP invasions in periodic media: lecture notes for the Toulouse KPP school

نویسندگان

  • Jean-Michel Roquejoffre
  • Lenya Ryzhik
چکیده

with a smooth function μ(x) that is 1-periodic in all variables xj, j = 1, . . . , n. This equation is known as the Fisher-Kolmogorov-Petrovskii-Piskunov, or Fisher-KPP equation, and was introduced in 1937 by Fisher, and KPP, in their two respective papers, Fisher’s paper focusing on numerical and “applied tools” analysis, and KPP giving a rigorous mathematical treatment. Both papers were pioneering in many respects, and are true classics of applied mathematics and applied analysis. The Fisher-KPP equation is at the first sight a simple combination of the diffusion equation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of monostable pulsating wave fronts for time periodic reaction-diffusion equations

Keywords: Reaction–diffusion equations Pulsating wave fronts KPP and monostable nonlinearities Uniqueness a b s t r a c t We establish the uniqueness of pulsating wave fronts for reaction–diffusion equations in time periodic media with monostable nonlinearities. For the Kolmogorov–Petrovsky– Piskunov (KPP) type nonlinearity, this result provides a complete classification of all types of KPP pul...

متن کامل

Technion lecture notes

The function f(T ), called the reaction rate, will always be Lipschitz, and satisfy f(T ) ≥ 0 for 0 ≤ T ≤ 1, f(T ) = 0 for T / ∈ (0, 1). (1.1) We will distinguish two types of the reaction rate: we say that f is of the KPP-type if f(T ) > 0 for 0 < T < 1 (1.2) f(T ) ≤ f ′(0)T (1.3) while f is of the ignition type if ∃θ0 ∈ (0, 1) so that f(T ) = 0 for 0 ≤ T ≤ θ0 and f(T ) > 0 for T ∈ (θ0, 1). (1.4)

متن کامل

Wave Propagation in a Lattice Kpp Equation in Random Media

We extend a result of Freidlin and Gartner (1979) for KPP (Kolmogorov-Petrovskii-Piskunov) wave fronts to the case d ≥ 2 for i.i.d. (independent and identically distributed) random media. We show a wave front propagation speed is attained for the discrete-space (lattice) KPP using a large deviation approach.

متن کامل

Existence of Kpp Type Fronts in Space-time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle

We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time periodic parabolic operator. Analysis of the ...

متن کامل

Uniqueness and stability properties of monostable pulsating fronts

In this paper, we prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov-Petrovsky-Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014